Cable-stayed bridges

Rajendra Chalisgaonkar

Cable-stayed bridges are being built increasingly for bridging medium and large spans. Although this concept of supporting a beam by stays from a tower is old, the evolution of modern cable-stayed bridges has taken place since 1950. India has yet to exploit this newly-developed bridge system to its full measure. The paper describes, in brief, the cable-stayed bridges built or proposed to be built in India, and recommends their wider adoption.

The cable-stayed bridge is the most modern and innovative of bridge systems. It found world-wide applications, especially in the countries of Europe during the last two decades. The concept of supporting a bridge deck by one or more inclined stays is by no means a new one and a number of such bridges were constructed in the past.

Nearly fifteen thousand bridges were destroyed in the Federal Republic of Germany in World War II. Reconstruction of these crossings in the post-war period provided bridge engineers an opportunity to develop a new concept of bridge design. Short supply of steel and the need to build bridges more economically brought the old concept of bridge design, namely the cable-stayed bridge concept, to the forefront. In addition to the potential economy the cable-stayed concept added a new dimension to the aesthetics of bridge design.

The rebirth of the new system must be credited to F. Dischinger, who published the results of his studies in 1949 and pointed out the advantages of high stresses in the stays of high-strength steel. The Stromsund Bridge, the first modern cable-stayed bridge, designed by Dischinger, was completed in Sweden in 1955. During the same period the Rhine Bridge at Dusseldorf, designed by Leonhardt, was erected and completed in 1958. The successful completion of these modern cable-stayed bridges heralded a new era of wide and successful application of the stayed-beam concept. Since then,

the new system is very popular amongst German bridge engineers and is now increasingly applied by designers all over the world. Several cable-stayed bridges have been built throughout the world and have proved to be economical as compared to the conventional bridges for the same span, Table 1.

Progress in India

The potential of the cable-stayed system has yet to be fully exploited in India. So far, only a few cable-stayed bridges have been proposed or are being built in India. Their brief details are described below.

Bridge over Ganga Canal at Roorkee:

A small cablestayed pedestrian crossing was successfully constructed over the Ganga Canal at Roorkee in 1981. The bridge has a length of 73.0m and is supported by radiating bridge ropes in two planes to the portal frame type of steel tower, Figure 1. A 1.3-m deep steel truss is used as a deck for the cable-stayed foot bridge. It has a clear road width of 1.67m and tower height to main span ratio of 1/6.7. The design of the bridge was done in the Civil Engineering Department, University of Roorkee, Roorkee.

Hooghly Bridge at Calcutta:

A major six-lane bridge with radiating cables is under construction over Hooghly River at Calcutta. The main span is 457.2m, with side spans of 182.88m on each side. The bridge has a composite superstructure of reinforced concrete deck slab over steel girders. The general arrangement of the proposed Hooghly Bridge is shown in Figure 2.

Bridge over new supply channel at Hardwar:

A small two-lane highway bridge of 130-m span is under construction over the new supply channel at Hardwar. The cables radiate on two sides of the reinforced concrete deck from a diamond-shaped reinforced concrete tower. The main

Tat	able 1. Brief details of various cable -stayed bridges in the world								
Sr.	Name of the bridge	Cables			Hight	Type of	Year of	Span length, m	
No.	and the country	Configuration	Туре	No. of plan	of tower m	deck o	completion	Main	End
1.	Stromsund (Sweden)	Radiating	Locked coil	2	27	Concret	e 1955	183	74
2.	North (W. Germany)	Harp	Locked coil	2	40	Steel	1958	260	108
3.	Severin (W. Germany)	Fan	Locked coil	2	65	Steel	1960	301	151
4.	North Elbe (W. Germany)	Star	Locked coil	1	53	Steel	1962	172	64
5.	General Ra fael Urdeneta (Venezuela)	Radiating/Harp	Locked coil	2	43	Concret	e 1962	235	160
6.	Julicher-Str. (W. Germany)	Radiating/Harp	Locked coil	1	45	Steel	1963	99	32
7.	The George Street (England)	Fan	Locked coil	2	37	Concret	e 1964	152	51
8.	Leverkusen (West Germany)	Harp	Locked coil	1	40	Steel	1964	280	106
9.	The Dnepr (USSR)	Radiating	Locked coil	2	27	Concret	e 1964	144	66
10.	Maxau (W. Germany)	Fan	Locked coil	1	46	Steel	1965	175	117
11.	Bonn Nord (West Germany)	Fan	Locked coil	1	49	Steel	1966	280	120
12.	Mayer (Japan)	Fan	Locked coil	1	32	Steel	1966	140	69
13.	Rees (W. Germany)	Harp	Locked coil	2	43	Steel	1967	255	104
14.	Wye (England)	Radiating/Harp	Locked coil	1	29	Steel	1967	235	87
15.	Ansade Magliana (Italy)	Radiating/Harp	Locked coil	2	34	Concret	e 1967	145	54
16.	Polcevera (Italy)	Radiating	Locked coil	2	45	Concret	e 1967	210	140
17.	Ludwigschafen (W. Germany)	Radiating	Locked coil	2	72	Steel	1968	138	138
18.	Batman (Tasmania)	Radiating	Locked coil	1	96	Steel	1968	210	50
19.	Harmsen (Holland)	Combined Star & Fan	Locked coil	1	48	Steel	1968	108	47
20.	New Luangwa (Zambia)	-do-	Locked coil	2	15	Concret	e 1968	222	40
21.	Knie (W. Germany)	Harp	Locked coil	2	114 above river bed	e Steel	1969	320	195
22.	St. Florent (France)	Radiating	Br. Strands	2	35	Steel	1969	104	104
23.	Papineau (Canada)	Radiating	Br. Strands	1	39	Steel	1969	240	90
24.	Hawkshaw (nada)	Radiating/Harp	Br. strands	2	34	Steel	1969	220	58
25.	Duisburg-Neuenkatnp (W. Germany)	Fan	Locked coil	1	50	Steel	1970	350	165
26.	Onomichi (Japan)	Radiating	Locked coil	2	36	Steel	1970	215	85
27.	Yodo (Japan)	Fan	PPWS	1	36	Steel	1970	216	80
28.	Arakawa (Japan)	Harp	PPWS	1	34	Steel	1970	160	60
29.	Le Havre (France)	Radiating	Locked coil	2	31	Steel	1970	73	32
30	Mannheim (W. Germany)	Fan	PPWS	2	70	Steel	1971	287	125
31	Bratislava (Czechoslovakia)	Radiating	PPWS	2	88	Steel	1971	303	75
32	Massena (France)	Fan	PPWS	1	34	Steel	1971	161.5	80 7
33.	Erskine (England)	Radiating/Harp	PPWS	1	88	Steel	1971	305	110
34.	Wadikuff (Libya)	Radiating/Harp	PPWS	2	54	Concret	e 1971	287	95
35.	Oberkasseler (W. Germany)	Harp	PPWS	1	78	Steel	1972	258	258
36	Sitka Harbor (US)	Radiating/Harn	Br Strands	2	30	Concret	e 1972	137	46
37	Ishikari (Iapan)	Fan	Locked coil	2	43	Steel	1972	250	110
38	Mesopotamia (Argentinia)	Radiating/Harn	Locked coil	2	97	Concret	e 1972	340	127
39	River Waal (Holland)	Radiating	Locked coil	2	46	Concret	e 1972	267	95
40	River Parana (Argentina)	Radiating	Locked coil	2	48	Concret	e 1972	245	132
41	Hoechst (W. Germany)	Harn	HST Bar	2	172	Concret	e 1972	148	111
42	Linz (Austria)	Harp	Locked coil	1	66	Steel	1972	215	192
43	Hainsburg (Austria)	Radiating	Locked coil	2	77	Steel	1972	228	138
44	Kohlbrand (W. Germany)	Fan	Locked coil	2	98	Steel	1974	325	97.5
44. 45	Franklin (W. Cormany)	Radiating/Harp	Locked coil	1	20	Steel	1974	125	12
45.	Spower (W. Cormany)	Radiating	Locked coil	2	20	Steel	1075	275	191
40.	Speyer (W. Germany)	Radiating	PPW/S	2	67	Steel	1975	404	158
47.	Doggonau (W. Cormany)	Radiating	Locked coil	1	83	Steel	1975	204	145
40. /0	Daikaku (Japan)	Radiating	PPW/S	2	41	Steel	1975	165	100
50	Kamono (Japan)	Ean	DDMC	1	45	Steel	1075	240	100
50.	Suchiro Bridge (Japan)	Fan	DDMC	1	43	Steel	1975	240	110
51.	Albert Canal (Palaium)	Fall	FFW5	1	42.73	Steel	1973	230	F2 0
52.	Ribert Canal (Deigium)	Fall	Pri stranda	1	40.00	Comercel	1977	210.2	142
55. E4	Zenete (Ane entine)	Fan De die time	Dr. strands	1	65	Concret	1077	320	145
54.	Zarate (Argentina)	Radiating	PPW5	2	67	Steel	1977	330	110
55. EC	Pasco-Kennewick (US)	Radiating	PPWS	2	57	Concret	e 1978	299	124
56.	West Gate (Australia)	Radiating	Br. Strands	2	46	Steel	1978	336	144
57.	Dusseldorf Flehe (W. Germany)	-	-	-	-	Steel	1978	367	-
58.	Strettoti Rande (Spain)	-	-	-	-	Steel	1978	400	-
59.	Roorkec (India)	Radiating Bridge	Ropes	2	11	Steel	1981	73.0	-
60.	Luling (US)	Radiating	PPWS	2	75	Stecl	UC	376	150
61.	I. Hutnigton (US)	Radiating	PPWS	2	77	Steel	UC	274	137
62.	Stavan ger Bridge (Norway)	Radiating	-	2	50.4	Con-Ste	el UC	185	120
63.	Dames point (US)	Harp	HST Bar	2	92	Concret	e UC	396	198
64.	Weirton-Steubeaville (US)	Fan	Br. Strands	1	65	Steel	UC	250	167
65.	Yamatogawa (Japan)	Radiating	-	-	-	Steel	UC	355	-
66.	Hooghly (Calcutta)	Radiating	-	2	134.39	Steel-Co	on. UC	457.2	182.9
67.	Posadas Encarnacu (Argentina)	Radiating	-	-	Concrete	UC	330	-	
68.	Hardwar (India)	Radiating	-	2	20	Concret	e UC	130	-
69.	Jogighopa (India)	Radiating	Parallel wire	2	50	Concret	e UC	5x286	-
70.	Akkar (India)	Radiating	-	2	56.11	Concret	e UC	152.4	-

Notes:1. UC= Under construction or proposed2. PPWS= Prefabricated parallel wire strands3. HST Bar= High strength threaded bar

Figure 1. Bridge over Ganga Canal at Roorkee

features of the bridge are shown in Figure 3. The cables are spaced at 16.25m along the main girder and the tower height to main span ratio is 1/6.5. The bridge design was done at Civil Engineering Department, University of Roorkee, Roorkee. The allowable deflection limit assumed in the design was span/400.

Bridge across Brahmaputra at Jogighopa (Assam):

An interesting feasibility study was carried out by the Department of Civil and Earthquake Engineering, University of Roorkee, Roorkee, for the construction of a 2055-m long railcum-road bridge or alternatively, only a road bridge across Brahmaputra River at Jogighopa in Assam. The project was sponsored by Rail India Technical and Economic Services (RITES). Five modules, each 514-m long, with a three-span configuration of 114m-286m-114m were proposed for the highway bridge. A single-box prestressed concrete girder and A-type reinforced concrete tower were considered for the study. The general arrangement of the bridge is shown in Figure 4.

Bridge at Akkar (Sikkim):

A cable-stayed bridge of 152.40-m span with concrete deck and

pylon is under construction at Akkar in Sikkim State. Figure 5 shows the broad details of the bridge.

Need for cable-stayed bridges

Utmost economy in material and an adequate carrying capacity are the main design features of the modern cablestayed bridge system. These features are more or less successfully achieved, though no simple formula can be applied to evaluate the conditions in which the economy of the system can be guaranteed.

The conventional bridge designs are based on the premise that for the most economic design, the cost of superstructure and substructure should be nearly equal. In India, the major cost of any river bridge is due to the deep foundations. In the case of cable-stayed bridges, the number of foundations being invariably less, the cost of substructure is generally less than the cost of superstructure. However, there may be a range of spans for which the total cost of the cable-stayed bridges may be less than the total cost of conventional bridges.

Various studies carried out in European countries indicated that cable-stayed bridges are more economical for a span

Figure 2. Second Hooghly Bridge at Calcutta

Figure 3. Bridge over new supply channel at Hardwar

length of about 300m. The cable-stayed Sitka Harbour Bridge in Alaska, U.S.A., and the PASCO, Washington Bridge in U.S.A. have proved to be more economical than the various conventional alternatives considered. Open design competitions held in Germany indicated that cable-stayed bridges are the most economical solution in that country for many highway bridges having a main span in the range of 150 to 370m.

In the field of cable-stayed bridge technology, only two studies have been reported in India so far, which indicate that cablestayed bridges are most economical for a span length of 200 to 300m in Indian conditions^{3, 6}. The feasibility study for Jogighopa Bridge in Assam has also proved that the cablestayed bridge system is more economical. Thus, it would be opportune for bridge engineers in India to consider the potential of this newly developed bridge system favourably.

Ease of erection has made cable-stayed bridges more popular in the European countries because they can be built by the cantilever method and no temporary intermediate supports are needed during erection. This may be a decisive factor in some cases, if the bridge passes over a busy navigational channel, rail or highway. Also, all materials can be transported on the finished portion of the bridge as erection proceeds, thus eliminating the need for ancillary equipment.

The other important feature responsible for the popularity of the cable-stayed bridge system during the last two decades is its elegant form and capability to blend with the landscape. Cable-stayed bridges are truly representative of modern times. They are pleasing in outline, clean in their anatomical conception and free from ornamentation.

Analysis of cable-stayed bridges

A cable-stayed bridge is a statically indeterminate structure with a high degree of redundancy. Analysis of cable-stayed bridges considering three-dimensional space action is a relatively complex problem. But, if suitable assumptions are made, the problem may be solved by two-dimensional analysis and results can be obtained with reliable accuracy for practical design. Several investigators have used a two dimensional approach and many bridges have been designed on that basis and constructed.

Undoubtedly, the cable-stayed bridge displays a nonlinear behaviour due to large displacements, catenary action of cables and bending moment-axial force interaction in girders and towers. Various investigators have studied the nonlinearity effect on cable-stayed bridges and found that nonlinearity is not significant and linear analysis gives satisfactory results. However, for very large spans and important structures, non-linear analysis must be carried out and its

Figure 4. Bridge across Brahmaputra at Jogighopa, Assam

Figure 5. Akkar Bridge in Sikkim

effect studied. Analysis can be done by using stiffness or flexibility method, even a mixed method of analysis has been used by Podolony and Scalzi¹³. The load balancing method and finite element technique are the other methods used for the analysis of cable-stayed bridges^{12,7}.

Specifications

No specification exists for cable-stayed bridges in particular, or long-span bridges in general, in the Indian Roads Congress (IRC). The existing IRC code specifies that the deflection of the bridge should not exceed span/800, whereas in Germany the cable-stayed bridges are being designed with deflection limit ranging from 1/500 to 1/225 of the span length.

American Association of State Highway and Transportation Officials (AASHTO) recommends that until further experience is gained in this field, the 1/500 limit should be adopted for design of cable.stayed bridges. Thus, it is clear that existing IRC specifications are applicable to short and medium span bridges. If the same limit is insisted upon for cable-stayed bridges, which have long flexible spans, they may not always prove to be competitive in comparison to other conventional bridges. Thus, separate IRC codes stating clearly the type of loads, allowable deflection, etc. are essential for cable-stayed bridges.

Conclusion

A cable-stayed bridge is an indeterminate structure, in which the girder behaviour is similar to that of a continuous beam supported elastically at the points of cable attachment. A wide variety of geometric configurations can easily be selected to suit the numerous requirements of site conditions and aesthetics for rail, highway and foot bridges. Techniques required for the analysis of cable-stayed bridges have been developed by many researchers. Except for a very simple case, a computer is necessary for the solution of this type of structure. With today's developing technology and availability of faster computers, there seems to be an enormous scope for the adoption of cable-stayed bridges in India for important long-span structures or for small structures like footbridges. Thus, the time has come when Indian bridge designers must utilise the potential of this system.

Acknowledgement

The above study was carried out by the author as a part for his ME thesis in Structural Engineering at the Deaprtment of Civil Engineering, University of Roorkee, Roorkee³. The author is highly indebted to Dr. Prem Krishna, Professor and head, Department of Civil Engineering, and Dr. Satyendra P. Gupta, Professor, Department of Earthquake Engineering, University of Roorkee, Roorkee, for their guidance and constant encouragement throughout the course of the study.

References

- AGARWAL, T. P. Analysis of Cable-stayed Bridges. PhD Thesis, Department of Civil Engineering, University of Roorkee, Roorkee, 1979.
- ARYA, A. S., KRISHNA, PREM and AGARWAL, T. P. Analysis of cable stayed bridges, Journal of Institution of Engineers (India), March 1980. Vol. 60.
- 3. CHALISGAONKAR, R. Cost Economics of Cable-stayed Bridges. M E Dissertation (Civil Engineering), University of Roorkee, Roorkee, 1982.
- CHALISGAONKAR, R., GUPTA, SATYENDRA P. and KRISKHA, PREM. Cost Economic of cable-stayed bridges. Proceedings of the Seminar on Modern Trends in Structural Analysis and Design. Department of Civil Engineering, Institute of Technology, Banaras Hindu University, Varanasi, February 1984.
- CHALISGAONKAR, R., GOYAL, S. K., GUPTA, SATYENDRA P. and KRISHNA, PREM. Cost economics of cable-stayed bridges in India. Proceedings of COMPUTER-85, Department of Civil Engineering, University of Roorkee: Roorkee. January/February 1985.
- GOYAL, S. K. Study of Cable-stayed Bridges with Steel Deck. ME Dissertation (Civil Engineering), University of Roorkee, Roorkee, 1983.
- KAJITA, T. and CHEUNG, Y. K. Finite element analysis of cable-stayed bridges. Journal of International Association for Bridge and Structural Engineering (IABSE), Pub. 33-11, 1973.
- KRISHNA, PREM, ARYA, A. S., et. al. Preliminary Design of Superstructures of 2055-m Long Cable-stayed Bridge across Brahmaputra at Jogighopa (Assam). Department of Civil and Earthquake Engineering, University of Roorkee, Roorkee. 1982.
- KRISHNA, PREM and KANCHI, M. B. Structural characteristics of cablestayed bridges. Proceedings of the Symposium on Modern Trends in Civil Engineering. University of Roorkee, Roorkee. November, 1972.
- KRISHNA, PREM, GUPTA, SATYENDRA, P. and CHALISGAONKAR, R. Studies on cost economics of cable-stayed bridges in India. The Bridge and Structural Engineer. December 1984, Vol. 14, No. 4, pp. 53-71.
- 11. LAZAR, B. E. Stiffness analysis of cable-stayed bridges, Journal of Structural Division, July 1972, American Society of Civil. Engineers.
- 12. LAZAR, B. E., TROITSKY, M. S. and DOUGLASS, Mc. Load balancing analysis of cable-stayed bridges. Journal of Structural Division, August 1972, American Society of Civil Engineers.
- 13. PODOLONY, JR. WALTER and SCALZI, JOHN B. Construction and Design of Cable-stayed Bridges. John Wiley and Sons, New York, 1976.
- 14. SASTRY, M. V. The second Hooghly Bridge at Calcutta, The Indian Concrete Journal, January 1985 Vol. 59, pp. 7-9.
- SETHIA, M. R. Static and Dynamic Study of Cable-stayed Bridges. PhD Thesis. Department of Earthquake Engineering, University of Roorkee, Roorkee. 1978.
- SMITH, B. S. A linear method of analysis for double-plane cable-stayed bridges. Proceedings of Institution of Civil Engineers (London), January 1968.
- 17. SUBBA RAO, T. N. Trends in the construction of concrete bridges. The Indian Concrete Journal, November 1984, Vol. 58, pp. 299-315.
- TAMIIANKAR, M. G. Design of cable-stayed girder bridges, Journal of Indian Roads Congress, May 1970.
- TROITSKY, M. S. Cable-stayed Bridges: Theory and Design. Crosby Lockwood and Steples, London, 1977.

Rajendra Chalisgaonkar, BE (Hons.), ME (Structures), MIE, Assistant Engineer, U.P. Irrigation Design Organisation, Roorkee.

(Source: ICJ July 1986, Vol. 60, No. 7, pp. 182-186)