
Most of the publications on thermal stresses in concrete 
bridges pertain to prismatic structures. The behaviour of non-
prismatic beams under thermal loading is discussed in the first 
part of the paper presented here. Simplified models of non-
prismatic beams analysed for thermal stresses herein provide 
insight into their behaviour. The second part of the paper deals 
with the behaviour of non-prismatic bridges subjected to the 
temperature distributions developed for the ambient 
conditions in New Delhi, India.

Temperature distributions for the consideration of thermal 
stresses in concrete bridges based on the ambient conditions in 

1New Delhi, India, were presented in an earlier paper . The 
studies available on thermal stresses in concrete bridges 
pertain mostly to prismatic structures. However, bridge 
structures are seldom of constant section throughout the 
length as the cross-section is usually varied in order to 
accommodate changes in the bending moment or shear force, 
especially in the region of supports. Thermal stresses in a non-
prismatic structure differ significantly from those in a 
prismatic structure, because they depend upon the geometry 

2of the structure as well . 

The variation of thermal stresses in non-prismatic concrete 
bridges of T- and box-sections for the New Delhi Temperature 

1Distributions (NDTD) is discussed in this paper . Two-span 
and multi-span structures of variable depth as well as those of 
constant depth but of varying cross-section were included in 
these investigations, Figure 1. It is shown that the thermal 
stresses increase in an intermediate span of a multi-span 
continuous bridge, but decrease in two-span structures as the 
bridge section is varied along the span. Linear and parabolic 
variations of the depth along the span were considered. The 
variation of the depth along the entire span and in a part of the 
span was considered in the case of linear soffit profile, Figure 
1(a) and 1(b). In the case of constant depth structures, the 
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Figure 1. Non-prismatic beams
(t = span, t  = length of variable section)1
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Figure 2. Cross-sections considered in the analysis 
(t  = 0.5 m and tb 0.18 m when not varied; in other cases w

t  varies from 0.5 to 0.8 m and tb varies from 0.18 to 0.40 m)w

thicknesses of the web and the bottom flange were varied in the 
support regions as indicated in Figure 1(c) and 1(d). 

Closed-form solutions are presented for the thermo-elastic 
analysis of non-prismatic beams of rectangular sections under 
linear temperature differentials. Thermal stress variation in 
non-prismatic structures is explained with the help of these 
models. Further analyses of more complex T- and box-sections 

3were carried out using the Spline Finite Strip Method .

Non-prismatic structures
A bridge structure is seldom of constant section. The current 
trend of bridge design is to keep the depth of the section nearly 
constant and to vary the web and the flange thicknes ses in 
order to reduce the construction time and ,costs.  Nevertheless, 
structures of variable depth were also included in the present 
study. The depth of the structures is usually varied either 
parabolically or linearly along the span, such that the 
maximum depth is available at the intermediate supports of a 
continuous bridge. Possible variation of the depth in an 
intermediate span of multi-span continuous beam is indicated 
in Figure 1(a) and that of one span of a two-span continuous 
structure in Figure 1 (b). In the case of linear soffit profile, the 
depth of the structure may be varied in a part of the span rather 
than in the entire span. The length over which the cross-section 
varies is shown as l  in Figure 1. A ratio of (l /l) = 0.0 indicates a 1 1

prismatic structure. Structures of constant depth but of 
variable web thickness (t )or bottom flange thickness (t ) are w b

shown in Figure 1(c) and 1(d). Only the bottom flange 
thickness t  is varied in these investigations as this is more b

common practice. The cross-sections of the bridges considered 
in this paper, viz. box-section, T and rectangular beams, are 
indicated in Figure 2. The width of the box girder is adequate to 
accommodate two-lane carriageway with footpaths on both 

4sides as per the Indian Roads Congress (IRC) specifications . 
The T-section indicated in Figure 2 can be taken as a part of a 
multi-beam bridge.

Behaviour under thermal loading 
Most of the publications on thermal analysis of bridges assume 
the structure to be prismatic for analytical simplicity. Thermal 
stresses in non-prismatic bridges of box-section under linear 

2temperature differential were presented by Podolny . It was 
shown that the stresses in the intermediate span of a multi-
span non-prismatic continuous bridge increase by more than 
50 percent compared to prismatic structures in the usual range 
of the variation of depth. However, the analysis pertained only 
to the parabolic variation of depth and a linear temperature 
differential. The temperature differentials in bridges are 
usually non -linear, and thus, the variation of thermal stresses 
is likely to be different. An intermediate span of a multi-span 
continuous bridge can be assumed to be a beam with both ends 
restrained against rotation and vertical displacement, but free 
to deform longitudinally. Similarly, a two-span continuous 
bridge can be analysed as a propped cantilever with the 
intermediate support assumed to be encastre and the end 
support free to deform longitudinally on account of the 
symmetry of loading and the boundary conditions.



It is obvious that the thermal stresses in a structure depend to a 
large extent on the temperature distributions assumed in the 
analysis. The temperature differentials cause self-equilibrating 
stresses as well as support moments in a continuous structure. 
The support restraining moments depend upon the structural 
geometry and the thermal curvatures developed in the 
structures. The thermal curvatures vary considerably as the 
section is varied. The thermal moment m developed in a 
structure can be expressed as 

m =  k E  I ψ    ... (1)c

where,
m = thermal moment
k = a coefficient
E  = Young's modulus of concretec

I = moment of inertia of the section
ψ = thermal curvature of the section.

The coefficient k depends upon the support conditions. The 
variation of thermal moments in an intermediate span of a 
prismatic rectangular beam as a ratio of the moment rn, in a 1.0-
m deep beam is shown in Figure 3 for various temperature 
distributions. The linear temperature distributions of the 

2,5French and the German codes (LTD)  and the non, linear 
6 7distributions of New Zealand (NZTD) , Australia (NAASRA) , 

as well as those developed for Melbourne, Australia (PMTD 
8 1and NMTD)  and New Delhi, India (NDTD)  were included in 

these computations. It can be noticed that there is a vast 
difference in the thermal moments developed in the beam for 
various distributions. The moments developed for the LTD 
and NMTD are nearly in the same proportion as the moments 
of inertia of the sections, whereas in all other cases, the increase 
in the thermal moments is much smaller than that of the 
moment of inertia. The thermal curvature in a non-prismatic 
structure varies along the span and causes higher support 
moments compared to a prismatic structure of the minimum 
beam section. The thermal response of a non-prismatic beam 
will thus depend upon its geometry and the temperature 
distribution considered among other parameters.

Multi-span continuous rectangular beam
As a simplified model, thermal moments in a non-prismatic 
rectangular beam for linear temperature differential were 
computed. Closed-form solutions can be obtained for such 
cases by treating the support moments as the redundants and 
by imposing compatibility conditions at the supports. The 
moment in a beam of varying depth can be shown to be

    ...(2)

where, d = depth at the support1

d  = depth at the midspan region2

l  = moment of inertia of the mid-span section2

l = span of the beam
t = length over which the beam section is varied1

y = (l /l)1

K = (d /d )1 2

K = (k-1)1

Figure 3. Variation of the ratio of thermal moments (m/m ) 1

with the depth of rectangular beams for various temperature 
distributions
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(LTD = Linear temperature distribution, NZTD = New Zealand temperature 
distribution, NAASRA = Australian specifications, PMTD and NMTD = 
proposed temperature distributions for Melbourne, NDTD Proposed 
temperature distributions for New Delhi)

T = temperature at the top surface
α = thermal coefficient of expansion.

The variation of the ratio (m/m ) for this beam for various 1

values of y as a function of K is shown in Figure 4(a). In this 
case, m  is the thermal moment in a prismatic beam of depth d . 2 2

It can be seen that the moments in the beam increase 
significantly as the ratio K is increased. However, increase in 
the moment is not very significant for values of y smaller than 
about 0.20 regardless of the value of K.

Similarly the moments in a beam of constant depth d but of 
thickness varying linearly over a length u near the supports 
can be shown to be 

   ...(3)

where, β = (b /b )1 2

β  = (β – 1) 1

b  = thickness at the supports 1

b  = mid-span thickness 2

The values (m/m ) are plotted against β for various values of y, 1

Figure 4(b). The response of the beam to the variation in the 
geometrical parameters was similar to that of the beam of 
varying depth, but the increase in the moments was relatively 
much smaller. This is because the thermal loading on the beam 
increases much more rapidly when its depth is increased than 



Figure 4. Variation of the restraint moment ratio (m/m ) in1

rectangular beams with encaster ends for the LTD
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when its thickness is increased. However, increase in the 
moments in this case was found to be higher than that due to a 
similar increase in the value of K for y less than 0.30.

This simple model provides insight into the thermal response 
of non-prismatic structures. As the support section is 
increased, the thermal moments in the structure increase. Since 
the moments in an intermediate span of a multi-span 
continuous structure are constant along the span, the mid-span 
section — being the smallest — will be subjected to increased 
stresses compared to a prismatic structure. The model also 
indicates that the increase in the stresses is more significant in 
beams of varying depth than in those of varying thickness; 
further, the moments, and thus, the stresses increase as l  is 1

increased.

For instance, for the case of K = 4.0 the moment in a non-
prismatic beam increases 3 times compared to that in a 
prismatic beam for Y = 0.5, but only 1.4 times for Y = 0.3, Figure 
4(a). Thus, the mid-span stresses in the non-prismatic beam 
increase by the same factors compared to a prismatic beam. 
Similarly, for K = 2.0 the stresses increase 1.85 times when Y= 
0.5, but only 1.3 times when Y= 0.3. In non-prismatic beams of 
constant depth, the mid-span stresses were 2.15 times those in 
a prismatic beam for β=4.0 and Y = 0.5; for β =2.0 the stresses 
were 1.45 times when y = 0.5 but only 1.22 times when Y = 0.3.

Two-span continuous rectangular beam 
The thermal response of two-span continuous beam will be 
different from that of multi-span beams. The increase in the 
section is usually confined to the intermediate support region, 
Figure 1. In this case d  and b  refer to the depth and thickness at 2 2

the end support. The intermediate support moments can be 
computed as

     ...(4)

l    =   moment of intertia of the support section.1

The support moments in two-span beam are plotted as the 
ratio (m/m ) against K for various values of Y in Figure 5(a). In 1

this case, y varies from 0.0 (prismatic beam) to 1.0. The support 
moments in a two-span structure increase much more rapidly 
with Y and K compared to those in a multi-span structure. The 
increase in the support moment in two-span structures when 
the depth was varied linearly over the entire span was more 
than nine times that in a prismatic structure of depth d ; the 2

corresponding increase in the multi-span structure was about 
three times that in a prismatic structure. However, unlike that 
in a multi-span structure, it is the maximum section in the 
span, viz. the support section, that is subjected to the 
maximum moment. The section modulus of the support 
section for K= 4.0 will be 16 times that of the section of depth 
d2. Since the moments increase 9 times, the stresses at the 
support section would be (9/16) times that in a prismatic 

structure. Thus, the stresses in a two-span non-prismatic beam 
decrease compared to a prismatic structure. Similar features 
can be observed in a non-prismatic rectangular beam of 
constant depth but of varying thickness. The moment at the 
support can be determined as 

    ...(5)

The values of (m/m ) are shown in Figure 5(b). Even in this 1

case it can be seen that the support moments are higher when 
compared to a multi-span bridge for the same values of Y and f. 
However, the relative increase in the section modulus at the 
support is more than the relative increase in the moments 
compared to a prismatic beam with the same section as that at 
the end support. For instance, the support moment for Y= 1.0 
and β = 4.0 is about three times and the section modulus is four 
times the corresponding values in prismatic beam of thickness 
b  . Thus, though the support moments are higher in the non-2

prismatic beam, the support section will be subjected to 3/4th 



Figure 5. Variation of the support moment ratio (m/m ) in 1

two-span rectangular beams for the LTD

CONCRETE BRIDGES 5

of the stresses in a prismatic beam. Figure 5(b) also indicates 
that the reduction in the stresses at the support section will 
become more significant as Y is decreased for a given value of 
β, since the increase in the moments will be smaller but the 
support section remains the same. It may be noted that the 
value of the expression within the square brackets in equations 
2 and 3 tends to a value equal to 1.0, while that for equations 4 
and 5 tends to a value equal to 1.5 as y approaches zero, or as K 
or approaches unity (prismatic beam). 

(To be continued)
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