# Point of View

### **Table 4: Hardened concrete properties**

|                                | Control concrete | SCC   |
|--------------------------------|------------------|-------|
| Compressive strength, MI       | Pa               |       |
| 1-day                          | 23.24            | 18.53 |
| 2-day                          | 40.27            | 35.78 |
| 7-day                          | 52.04            | 50.31 |
| 28-day                         | 61.60            | 64.67 |
| Flexural strength, MPa         |                  |       |
| 3-day                          | 5.6              | 5.0   |
| 7-day                          | 6.0              | 6.0   |
| 28-day                         | 7.3              | 7.8   |
| Split tensile strength, MF     | a                |       |
| 7-day                          | 2.49             | 2.55  |
| 28-day                         | 2.72             | 2.89  |
| RCPT values, coulombs (28-day) | 15               | 17    |

Table 6 : Cost analysis of SCC and control concrete of approximately 40 MPa strengths

| Material            | Control  | Control concrete |          | SCC               | Differential     |
|---------------------|----------|------------------|----------|-------------------|------------------|
|                     | Quantity | Rate, Rs         | Quantity | Rate, Rs          |                  |
| Cement, kg          | 395      | 3000/t           | 300      | 3000/t            | -285             |
| Fly ash, kg         | 130      | 1500/t           | 170      | 1500/t            | +60              |
| 20 mm aggregate, kg | 639      | 370/t            | 842      | 370/t             | + 75.11          |
| 10 mm aggregate, kg | 462      | 370/t            | 0        | 370/t             | -170.94          |
| Crushed sand, kg    | 0        | 850/t            | 235      | 850/t             | + 199.75         |
| Natural sand, kg    | 660      | 900/t            | 745      | 900/t             | + 76.5           |
| Admixture PCE, l    | -        | 140/l            | 4.23     | 140/l             | + 592.2          |
| Admixture VMA, l    | -        | 40/l             | 1.41     | 40/l              | + 56.4           |
| Admixture SNF, l    | 5.25     | 33/1             | -        | 33/1              | -173.25          |
|                     |          |                  |          |                   | + 430.77         |
|                     |          |                  |          | Cost above contro | ol 16.8 per cent |

concrete. The proportion of the ingredients used is given in *Table* 1.

The control parameters of the SCC mix and EFNARC Guide recommendations are given in *Table 2. Table 3* gives the fresh concrete properties.

To study the relative costs of the materials used, the prices (as of October 2003) of the materials in the Thane region were considered. While *Table* 4 gives hardened concrete properties, the costs are given in *Table* 5.

It can be seen that the cost of materials for SCC is just 16.05 percent above the control.

Similarly, from *Table* 6, it can be seen that the cost of M40 grade SCC is higher by about 16.8 percent over the control.

A similar concern about cost had been prevailing in the UK. The cost scenario has been brought out interestingly in an article by Allan J. Dowson<sup>1</sup>. He states that "Raw material costs alone should not be considered the criteria for acceptance or rejection of the system. All costs should be included". An example of the overall costs for 1 m<sup>3</sup> of concrete and production are shown in *Table* 7.

The costs in *Table* 7 are for precast units production: For the same number of units produced, the cost savings are in the number of men employed to carry out the work. For normal production the number of operators would be two for assembly, four for casting, two for stripping and four for finishing. Selfcompacting concrete requires only two operators for assembly and two for stripping and only one for placing concrete. There is no requirement for the finishes as the SCC concrete finish is good enough.

## Concluding remarks

From the above observations, a very promising picture emerges as given below.

- (*i*) SCC is comparable in fact superior — to conventional concrete in respect of all properties.
- (ii) It should be the preferred choice when concreting conditions are difficult.

Table 5 : Cost analysis of SCC and control concrete for similar strengths

|                     | Control concrete |             |            | SCC         |              |  |
|---------------------|------------------|-------------|------------|-------------|--------------|--|
|                     | Rate, Rs         | Quantity/kg | Amount, Rs | Quantity/kg | Amount, Rs   |  |
| Cement              | 3000/t           | 450         | 1350       | 400         | 1200         |  |
| Fly ash             | 1500/t           | -           | -          | 175         | 263          |  |
| Sand                |                  |             |            |             |              |  |
| Natural             | 900/t            | 627         | 564        | 225         | 203          |  |
| Crushed             | 850/t            | 267         | 227        | 680         | 578          |  |
| Coarse aggregate    |                  |             |            |             |              |  |
| 20 mm               | 370/t            | 510         | 189        | 405         | 150          |  |
| 10 mm               | 370/t            | 430         | 159        | 330         | 122          |  |
| Water               | -                | -           | -          | -           | -            |  |
| PCE-based admixture | 140/l            | -           | -          | 5.175       | 725          |  |
| Superplasticiser    | 33/1             | 11.25       | 371        | -           | -            |  |
| Retarder            | 50/l             | 1.35        | 68         | 1.725       | 86           |  |
| VMA                 | 40/l             | -           | -          | 0.575       | 23           |  |
| Total               |                  |             | 2928       |             | 3350         |  |
| Cost over control   |                  |             |            |             | 16.05 percen |  |

| Table 7: | Cost  | comparison        | of | SCC | and |
|----------|-------|-------------------|----|-----|-----|
| standard | conci | rete <sup>1</sup> |    |     |     |

| Costing /m <sup>3</sup> | Standard<br>concrete, £ | SCC,<br>£ |
|-------------------------|-------------------------|-----------|
| Concrete                | 36.90                   | 38.53     |
| Admixture               | 3.53                    | 8.38      |
| Mould and assembly      | 5.04                    | 5.04      |
| Casting and compaction  | 8.40                    | 3.03      |
| Stripping               | 7.56                    | 5.04      |
| Finishing               | 18.48                   | 0         |
| Vibration maintenance   | 1.00                    | 0         |
| Total cost              | 80.91                   | 60.02     |

(iii) Cost of only the materials of SCC may appear to be slightly more, say about 15 percent or so.

- (iv) However, on a more rational basis of the total costs, including the labour charges for formwork and making good finished surfaces, SCC will be more advantageous.
- (v) From holistic considerations, SCC will be more cost-effective.

# Acknowledgement

The information contained herein has been based on the work carried out in the laboratories of Master Builders Technology (MBT) India Pvt Ltd and is hereby acknowledged.

### Reference

1. DOWSON, ALLAN J., *The application of self compacting concrete in precast products*, Allan Dowson Consulting.



**Mr B.V.B. Pai** has over 40 years experience of which 35 years have been in the the field of concrete. He was in The Associated Cement Cos Ltd (ACC) for 33 years and served in their Concrete As-

sociation of India Division initially and then in the Research & Consutancy Directorate. He is now a freelance consultant and advisor to MBT India Pvt Ltd.

•••